What you need to know about AP Statistics...

The AP Stats course is designed to make you think differently about data, in a time where data is often being misconstrued. We explore data through different mediums leading up to the most important topic in all of statistics (where you see the infamous "a new study found...". The four main topics covered in this class include: Descriptive Statistics, Experimental Design, Probability, and Inference.

Workload. Traditionally, we do most learning in class and homework is optional. With the unknown of how the fall will look, I cannot entirely speak to how the workload will look, but I anticipate the bulk of the learning will come on your end through videos and other resources (but hopefully not!).

Grades. Each unit will consist of one investigation (lab), two - three quizzes, and a unit test, all of which count as summative grades. The AP test consists of 40 multiple choice questions and 6 free response. Tests and quizzes are designed like the AP test with a mix of multiple choice and free response questions.

Technology. You will need a graphing calculator for this course. Either a Ti-84 or NSpire will suffice. If you do not have a graphing calculator, Androids have an emulator called Wabbitemu which has the Ti-84 as well. For iOS devices, the GrafNCalc83 is not the Ti-84, but it has all the features needed. There is also Desmos, however, the learning curve is slightly different. As of now College Board does not allow Desmos, but this may change.

The summer assignment... Please review the resources provided for chapter 1 and complete the questions that accompany it. The powerpoints and questions are split up by section so that you can work on one at a time.

It should be noted that this summer assignment does not count as a summative grade. Don't stress, you have seen most of this material before in Algebra 1 and 2, it just adds a few new topics. Understanding this material will only benefit you as we dive into AP Statistics in the fall.

Please feel free to reach out to me with any questions, comments, or concerns. I look forward to a great year and am excited to meet all of you!

Dermot McGee
dermot.mcgee@lcps.org

Introduction 1.0 and 1.1 - Statistics: The Science and Art of Data/Analyzing Categorical Data

1. What variables are measured? Identify each as categorical or quantitative. In what units were the quantitative variables measured?

State	Number of Family Members	Age	Gender	Marital Status	Total Income	Travel time to work
Kentucky	2	61	Female	Married	21000	20
Florida	6	27	Female	Married	21300	20
Wisconsin	2	27	Male	Married	30000	5
California	4	33	Female	Married	26000	10
Michigan	3	49	Female	Married	15100	25
Virginia	3	26	Female	Married	25000	15
Pennsylvania	4	44	Male	Married	43000	10
Virginia	4	22	Male	Never married/ single	3000	0
California	1	30	Male	Never married/ single	40000	
New York	4	34	Female	Separated	30000	15

2. A sample of 200 children from the United Kingdom ages $9-17$ was selected from the CensusAtSchool website (www.censusatschool.com). The gender of each student was recorded along with which super power they would most like to have: invisibility, super strength, telepathy (ability to read minds), ability to fly, or ability to freeze time. Here are the results:

	Female	Male	Total
Invisibility	17	13	30
Super Strength	3	17	20
Telepathy	39	5	44
Fly	36	18	54
Freeze Time	20	32	52
Total	115	85	200

a. What proportion of males want the power of invisibility?
b. What proportion of females want the power of freeze time?
c. What proportion of children that want the power of telepathy are male?
d. What proportion of children that want the power of fly are female?
3. Create a well labeled segmented bar graph of the marginal distributions of power preference and gender. Be sure to include a key.

Key:
4. Based on the graphs above, can we conclude that boys and girls differ in their preference of superpower? Give appropriate evidence to support your answer.

Section 1.2 - Displaying Quantitative Data with Graphs

Smart Phone Battery Life

Smart Phone	Battery Life (minutes)
Apple iPhone	300
Motorola Droid	385
Palm Pre	300
Blackberry Bold	360
Blackberry Storm	330
Motorola Cliq	360
Samsung Moment	330
Blackberry Tour	300
HTC Droid	460

1. Describe the shape, center, and spread of the distribution. Are there any (potential) outliers?

Top vs. Bottom Freezers

How do the annual energy costs (in dollars) compare for refrigerators with top freezers and refrigerators with bottom freezers? The data below is from the May 2015 issue of Consumer Reports.

2. Compare the distributions of annual energy costs for these two types of refrigerators.

Who's Taller?

Which gender is taller? A sample of 14-year-olds from the United Kingdom was randomly selected using the CensusAtSchool website.

Here are the heights of the students (in cm):
Male: $154,157,187,163,167,159,169,162,176,177,151,175,174,165,165,183,180$ Female: 160, 169, 152, 167, $164,163,160,163,169,157,158,153,161,165,165,159,168,153,166,158,158,166$

Here is a back-to-back stemplot comparing male and female heights:

3. Compare the distributions of height for females and males.

Section 1.3 - Describing Quantitative Data with Numbers

McDonald's Beef Sandwiches

Here are data for the amount of fat (in grams) for McDonald's been sandwiches:

Sandwich	Fat (g)
Hamburger	9 g
Cheeseburger	12 g
Double Cheeseburger	23 g
McDouble	19 g
Quarter Pounder $^{\oplus}$	19 g
Quarter Pounder $^{\oplus}$ with Cheese	26 g
Double Quarter Pounder ${ }^{\oplus}$ with Cheese	42 g
Big Mac $^{\oplus}$	29 g
Big N' Tasty $^{\oplus}$	24 g
Big N $^{\top}$ Tasty ${ }^{\oplus}$ with Cheese	28 g
Angus Bacon \& Cheese	39 g
Angus Deluxe	39 g
Angus Mushroom \& Swiss	40 g
McRib ${ }^{\oplus}$	26 g
Mac Snack Wrap	19 g

Use a graphing calculator to find the following:

Mean	
Median	
5 Number Summary	
IQR	
Are there any outlier/s using the IQR*1.5 Rule?	

The Previous Home Run King

Using a graphing calculator, create a box plot using the data below. Be sure to identify each number in a five number summary and any outliers using the IQR*1.5 Rule.

Number of home runs that Hank Aaron hit in each of his 23 seasons:

Who Has More Contacts - Males or Females?

The following data show the number of contacts that a sample of high school students had in their phones. Do the data give convincing statistical evidence that one gender has more contacts than the other? You need both graphical and numerical evidence.

Male: 1244129274487852602903116816916721413511410510396144
Female: 30831162217315513418012433213218183110

AP Stats Chapter 1

Variable is any characteristic of an individual. This can be broken up into two groups.

- Categorical Variables - places an individual into one of several groups or categories Can't take an average of Examples - color, ice cream flavor, gender

Quantitative Variables - takes numerical values for which it makes sense to find an average Can take average and measure in units Examples - Height, Weight, Age, Shoe Size
2. The Gallup Poll conducted a representative telephone survey of 1180 American voters during the first quarter of 1999. Among the reported results were the voter's region (Northeast, South, etc.), age, party affiliation, and whether or not the person had voted in the previous election.
a. What is the population of interest for this problem?

American Voters

b. What is the sample for this problem?

1180 American Voters
c. What variables were measured? Identify each as categorical or quantitative

Categorical: Region, party affiliation, voted in previous election

Quantitative: Age

Chapter 1.0/1.1 What is Statistics and how do I interpret it?

Statistics is the science of Data and . Variability

This course is broken up into two categories

Descriptive Statistics Statistical Inference
Population vs. Samples
Population all data of a particular set
Sample a subset of a population
This class is a sample of the entire Rock Ridge _ population
When you make a calculation from a population it is called a _ parameter
When you make a calculation from a sample it is called a __ statistic
Individuals are objects described by a set of data. Who what

Examples:

1. Jake is a car buff who wants to find out more about the vehicles that students at his school drive. He gets permission to go to the student parking lot and record data. Later, he does some research about each model of car online. Finally, Jake makes a spreadsheet that includes each car's model, year, color, number of miles on the car, gas mileage, weight, and whether it has a navigation system.
a. Who/what are the individuals in Jake's study?

Cars in the student parking lot
b. What variables did Jake measure? Identify each as categorical or quantitative.

Categorical: Model, color, navigation system Quantitative: Number of miles on car, gas mileage, weight

Year?

Analyzing Categorical Data

A recent survey of people at the Alamo movie theater were asked their favorite type of movie genre.

**The sum of all of the relative frequencies should always equal 100 or round to it. Typically round all decimals to the tenth or hundredth place.

When your data is categorical it can be displayed 2 different ways. overlap can happen Bur gruph show \% in groups. Pie chart/circle graph
Things to keep in mind when making a bar graph.

1. It is called a BARgraph for a reason. USE BARS NOT PICTURES!

NO!

BAD!
2. Watch your scales! Make sure all the bars are equally wide.

3. Make bars disjointed. They can go in any order because they are categorical.
4. It is rare that you would ever have to draw a pie chart by hand, there are many websites out there that will do it for you.

How my time is spent in a week?

A good pie chart

Young adults by gender and most used phone app prone aps by gender					
	Female	Male	Total	Femate	
Twitter	63	58	121	Fther: $63=34.8$	
Instagram	79	33	112		
Facebook	39	28		ta: $\frac{79}{59}=43.6 \%$	$=27.7 \%$
Total	181	119	1300	$=6: 39 / 81=21.5 \%$	$28 / 49=23.5 \%$
The marginal distribution of one of the categorical variables in a two-way table of counts. It's the					
distribution of values of that variable among all individuals by the table. (think row or column) APPS: Twitter' $\frac{121}{300}=403 \% . \mid \ln s t a: \frac{122}{300}: 37.3 \%$ F-6: $67 / 300=22.3 \%$					
A conditional distribution of a variabbe describes the values of that variable among individuals whohave a specific value of another variable.					
listed above: if we said conditional distribution for phone app by gender					
he other alternative would be gender by phone app which would list all apps followed by male/fen					

Here is how to display either marginal or conditional distributions

So how can we tell if there is an association between two categorical variables?

- Find the conditional distribution for one variable by another.
- If the percentages of each group are relatively the same across the categories we can say that there is no association (or independent).
- If there is a notable difference we can say that there is an association (or dependent)

Using the example from before, it appears that because there is a notable difference between each of the groups for the most used app and gender, there is an association between them.

Chapter 1.2 Displaying and Describing Quantitative Data

We will be using Histograms, Dotplots, Stem/Leaf plots, and Boxplots to describe quantitative data

Shape is basically asking "Where is the tail?"

Quantitative Data continued... Histograms

Quantitative variables often take many values. A graph of the distribution may be clearer if nearby values are grouped together. The most common graph of the distribution of one quantitative variable is a histogram.
How to make a histogram:
1) Divide the range of data into classes of equal width
2) Find the count (frequency) or percent (relative frequency)
of individuals in each class.
3)Label and scale your axes and draw the histogram. The
height of the bar equals its frequency. Adjacent bars should
touch, unless a class contains no individuals.

Bar Graph

Making a stemplot

Splitting Stems

When data values are "bunched up", we can get a better picture of the distribution by splitting stems.

Back-to-Back Stemplots
Two distributions of the same quantitative variable can be compared using a back-to-back stemplot with

Example: A cashier at Target tracks how much 30 randomly selected shoppers spend by gender

Female					Create a back-to-back stemplot. \mathcal{M}		
\$133	\$132	\$95	\$97	\$118		8	123
\$87	\$97	\$120	\$139	\$120	7	8	23
\$119	\$120	\$127	\$133	\$137	775	9	466
		Male				10	03589
\$82	\$103	\$138	\$127	\$96			246
\$83	\$116	\$100	\$109	\$96	8	11	246
\$94	\$105	\$108	\$112	\$114	7000	12	7
om	,	dis	utio		97332		8

There does not appear to be any outliers in either group.
The data of female shoppers appears skewed left while men are roughly symmetric. Females have a larger average of dollars spent at Target compared to men (about $\$ 120$ and $\$ 105$ respectively). The female distribution has a gap and an uneven spread of data compared to the male's.

